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Abstract 
 
This report describes results of applying a dynamic econometric model that is widely used in 
macroeconomics and finance to time series of domestic and foreign sales price indices which are 
relevant to Alaska’s king crab fishery. A bivariate vector autoregression (VAR) was performed 
with time series from Alaska’s Commercial Operators Annual Report (COAR), over the period 
1991-2006, and time series from the U.S. Merchandise Trade Statistics on king crab imports over 
the same period. Estimation and testing procedures that are widely used in financial 
econometrics were used here to select a model of king crab prices such that critical assumptions 
were not rejected. After model selection, 2 hypotheses were tested using these data: One 
hypothesis is that rationalization of the Bering Sea and Aleutian Islands crab fisheries in fall 
2005 had a detectable statistical effect on the price series for king crab from the COAR or U.S. 
trade statistics. The other hypothesis is that certain dynamic relationships are present in the 
model which implies one set of variables is helpful in forecasting another set. There are 2 
versions of this second hypothesis: One is that U.S. import prices for king crab are useful in 
forecasting future values of the COAR price index for wholesale prices, and the opposite 
implication is that price statistics from the COAR help forecast import prices of king crab. Tests 
of these hypotheses did not produce any significant results. Therefore, conclusions in the report 
are that i) rationalization was not a significant factor through 2006 in prices received by U.S. 
producers for Alaskan king crab, and ii) COAR prices over the period 1991-2006 can be treated 
as statistically separate, in a time series sense, from U.S. prices for imports of king crab. 
 
1. Introduction 
 
In October 2007, a market report in National Fisherman magazine was titled “Flood of Russian 
kings negates price gains expected with rationalization.” This title suggests 2 distinct, and 
interesting, hypotheses about recent U.S. price dynamics for king crab: First, prices of U.S. 
imports, primarily from Russia, may be statistically related to prices received for king crab by 
U.S. producers. Economic theory would suggest that the price of imports is important if U.S. and 
Russian products compete in domestic markets to a significant degree. The second hypothesis is 
that rationalization led to a structural break in prices of Alaska king crab. In particular, 
rationalization was expected to have a positive effect on prices but this effect may have been 
swamped by the negative effect (under the first hypothesis) on prices implied by the recent influx 
of Russian king crab in U.S. imports. The time series analysis described in this report 
investigates both hypotheses. In particular it tests for the presence of a structural break after 
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rationalization, and whether there has been a significant dynamic relationship between wholesale 
prices received by Alaska processors and prices paid for U.S. imports of king crab. 
 
Time series methods used in this report are based on the stationary vector autoregression (VAR) 
model (e.g. Ch. 11 in Hamilton 1994). This type of model can be interpreted as a reduced-form 
and a-theoretical description of a dynamical system. Within this statistical framework, alternative 
models that represent different restrictions implied by economic theory can be tested. This type 
of model was popularized in macroeconomics by, for example, Sims (1980), and VAR models 
are now widely used in the analysis of financial time series (Zivot and Wang 2003). These 
models have also been selectively applied in fisheries economics (e.g. Rosenman 1987, Dalton 
2001). Zivot and Wang (Ch. 11) state that the VAR model is “one of the most successful, 
flexible, and easy to use models for the analysis of multivariate time series” and has “proven to 
be especially useful for describing the dynamic behavior of economic and financial time series 
and for forecasting.” These authors note that forecasts from a VAR model are often superior to 
forecasts from univariate time series models, or theory-based simultaneous equations models. 
Procedures used for estimation and testing of the VAR model in this report are described fully in 
Ch. 11 of Zivot and Wang (2003). Consequently, statistical tables and graphics in the report were 
produced from routines in S+, and in particular, the S+Finmetrics module. To economize, only a 
brief introduction to the model, methods of estimation, and testing are given here. Interested 
readers are referred to the list of references at the end of this report for a more comprehensive 
treatment of VAR models. 
 
The rest of the report is organized as follows. Sec. 2 introduces the VAR model and describes 
methods used for estimation, testing, and forecasting. Sec. 3 documents the construction of time 
series that are used with the model from Alaska’s Commercial Operators Annual Report 
(COAR) on average wholesale prices received by U.S. processors for Alaskan king crab, and 
from the U.S. Census Bureau’s Merchandise Trade Statistics on the average price paid for U.S. 
imports. Sec. 4 presents the results of model estimation, diagnostic tests that form the basis of 
model selection, price forecasts from the selected model, and statistics that are used to test the 
pair of hypotheses about U.S. prices for king crab identified above. Sec. 5 summarizes the main 
conclusions in the report. An appendix at the end presents several results on forecasting U.S. 
import and wholesale prices with VAR models. 
 
2. Model, Estimation, and Testing 
 
The simplest VAR model can be represented by a pair of first-order difference equations that 
describe, in appearance, a simple dynamical system but in fact it can display very complicated 
behavior. In matrix notation, tx  is a vector of variables in time t, c is a vector of constants (i.e. 
intercepts), A is a square matrix that is invertible which satisfies certain bounds on its 
eigenvalues (in particular, these are real numbers and each diagonal element of A is strictly less 
than 1 in absolute value), and tε  is an uncorrelated multivariate normal random process with a 
mean value of zero. The process for tx  satisfies the first-order matrix difference equation: 
 
 1 .t t tx c Ax ε−= + +  (1) 
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These assumptions imply that the process for tx is (strictly) stationary (e.g. see Fuller 1976). A 
more general VAR, including higher-order lags of 2tx −  and 3tx − , is considered below in the 
results but the form in equation (1) is general enough to describe the process of model validation, 
estimation, and hypothesis testing, that is documented in this section.  
 
Estimation 
 
Given a set of observations on tx , equation (1) can be formulated as a system of equations in the 
form of Zellner’s (1960) seemingly unrelated regression (SUR). In this case, each equation in a 
VAR has the same set of regressors and it is well known that parameters in each equation 
implicit in the system (1) can be estimated by ordinary least-squares without losing efficiency 
relative to generalized least-squares. The S+Finmetrics module has a routine for estimating VAR 
models.  
 
Diagnostic tests 
 
Statistical properties of tε in equation (1) are important, both in terms of model validation and in 
the distributional assumptions behind each hypothesis test. In particular, the results of statistical 
tests given below do not reject the assumption of a multivariate normal distribution (Shapiro-
Wilk 1965) and do not present significant levels of autocorrelation in the process (Ljung and Box 
1979). Other tests, for the presence of unit roots (Said and Dickey 1984; Kwiatkowski, Phillips, 
Schmidt and Shin 1992), are concerned with bounds on diagonal elements of A to rule out 
nonstationary behavior in the model. Results of unit root tests are presented below, in Section 4, 
and do not reject a stationary null in the series of price indices that are used for the analysis in 
this report. Likewise, production levels and export quantities of Alaska king crab are compatible 
with a stationary model, but the time series of U.S. import quantities of king crab is clearly not 
stationary. Since nonstationary data can produce spurious regressions, stationary data are an 
important prerequisite for the methods described in this section. Therefore, the results described 
below are based on price indices alone and the nonstationary series of import quantities is 
excluded from the statistical analysis in this report. The Shapiro-Wilk and Ljung-Box tests are 
implemented in S+, and both references for unit root tests are available in the S+Finmetrics 
module. Note that the first unit root test is the Augmented Dickey-Fuller, which starts from a unit 
root null, whereas the second, known as the KPSS test, is based on a stationary null. 
 
Forecasting and Granger Causality Tests  
 
A fundamental question that a VAR model can be used to address is how useful some variables 
are in forecasting other variables in the system. In fact, dynamic relationships in a VAR model 
are meant to be interpreted in terms of forecasts. Define the conditional expectation 

( ) ( | , )t t j t j t tE E xε ε ε+ +≡ . By assumption, ( ) 0t t jE ε + =  for all 0j > .  
 
In a bivariate VAR, the off-diagonal terms of matrix A in equation (1) represent the influence of 
lagged values of one variable on the dynamics of the other. For example, the bivariate version of 
equation (1) is represented explicitly by the system 
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In the bivariate case, each k-step ahead forecast of ( )t t kE x + depends only on the vector tx  and 
matrix powers of A, which is called the Markov condition. Therefore, an off-diagonal term 

0,ija i j= ≠ , in the system (2) implies that variable j is not helpful in forecasting variable i, or in 
the terminology of time series econometrics, variable j does not Granger cause variable i. 
Explicitly, 2x  fails to Granger cause 1x  if 12 0a = , and conversely, 1x  fails to Granger cause 2x  
if 21 0a = . Granger causality tests are easily conducted by using the Wald test statistic in S+. 
 
The Markov condition and statements about Granger causality can be easily seen to hold in 
multivariate VAR models and models with higher-order lags by following a procedure of 
recursive substitution using equation (1). In the multivariate case, Granger causality fails to hold 
in one direction if the matrix A is upper (or lower) triangular, and it fails to hold in both 
directions if the matrix is diagonal. In cases with higher-order lag variables, Granger causality 
fails if the matrix of coefficients for each lag are upper (or lower) triangular.  
 
A final point about Granger causality worth emphasizing is that statements regarding its 
direction are not necessarily related to any notion of physical causation. For example, it is 
entirely possible that an economic variable such as prices could Granger cause a physical 
variable such as weather. In this case, a physical interpretation of causation would be nonsense. 
Instead the presence of Granger causality can be explained by forward looking behavior by 
rational agents, who may have an economic incentive to forecast certain types of weather events, 
and thus, changes in their behavior in response to these forecasts could have significant effects 
on prices. In such circumstances, prices may not fail to Granger cause the weather.  
 
Chow’s Test for Structural Breaks 
 
The presence of structural breaks is an important issue in time series econometrics. An obvious 
example from macroeconomics is the business cycle. The simplest type of test in this situation 
involves a known date at which a break possibly occurred. Chow (1960) described a simple and 
flexible test statistic, based on an ordinary least squares (OLS) linear regression model, that 
applies even in situations where only 1 or 2 additional observations are available following the 
date of a possible break, which is the situation currently with crab rationalization.1 The basic idea 
behind Chow’s test is to compare predictions of the linear regression model, conditional on data 
from before the possible break, with the additional observations using the squared-difference as a 
test statistic. Unlike other statistical tests that are cited in this report, the Chow test is not 
available in S+. Consequently, a version of Chow’s test for the work described in this report was 
developed and programmed in S+ by the author, and it is documented here for review. 
                                                 
1 Rea (1978) demonstrates that there is a source of indeterminacy in the Chow test when the number of additional 
observations is less than the number of parameters in the model for the period after a possible structural break. This 
indeterminacy can be derived explicitly for each equation in a bivariate VAR model and is not a concern here. In 
this case, estimates are represented by a point on a plane, the set of indeterminate points form a line in that plane, 
and the original (pre-break) estimates are a point on that line. If the post-break estimates are significantly different, 
and the direction of change is arbitrary, then almost surely, the post-break estimates are not on that line. 
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Since OLS estimation of each equation in the system (2) is efficient under conditions assumed 
here, Chow’s procedure can be applied directly to each. Let iα  denote a column vector that 
contains all of the parameters, including the constant term, in equation 1,2i =  from the system in 
(2). From (2), the dimension of each iα  is 3. However higher order lags in a bivariate VAR are 
considered in the results below. In this case, the dimension of each iα  is 2 1k l= + , where 
l denotes the number of lags in each equation.  
 
Suppose there are initially 1,. ,t T= K  observations on each variable in the system. However 
with a VAR, only n T l= −  observations are available for estimation because lag variables in 
each equation must be filled. Assume n k>  which is equivalent to 3 1T l> + in a bivariate VAR. 
A set of k-dimensional column vectors can be constructed that contain the data that form the 
regression equation for each t. Each vector has a one in the first position that corresponds to the 
constant term in each iα . The first vector in the set has variable pairs 1 2( , )t tx x  that correspond to 
the first 1,. ,t l= K observations. The second vector has variable pairs that correspond to the next 

2,. , 1t l= +K  observations, and so on until the n-th vector contains pairs from 
1 ,. , 1t T l T= − − −K . Let nX  denote the n p×  matrix that results from stacking these vectors, 

and let |i ny  denote the column vector of observations, itx , from 1,. ,t l T= + K . Let |ˆi nα represent 
the OLS estimate from the regression of |i ny  on nX .  
 
With an additional m observations, a continuation of the stacking procedure from above defines 
an m p×  matrix, mX . These additional observations are specified by the model  
 
 | | | .i m m i m i my X α ε= +  (3) 

 
By assumption |i mε is normally distributed with covariance matrix i Iσ , identical to the process 
for |i nε . This assumption is important but not the subject of testing here.  
 
Chow’s test is based on the value of the prediction error defined by the vector of differences 

| |ˆi m m i nd y X α= − . Hence, its expected value is  
 
 | |( ) .m i m m i nE d X Xα α= −  (4) 

 
Let |i ns  denote the (unbiased) standard error from the n observations on equation i and let H 

denote the hat-like matrix 1( )m n n mX X X X−′ ′ , where a prime denotes the matrix transpose 
operation. It can be shown that under the null hypothesis | |i n i m iα α α= =  the statistic  
 

 
1

2
|
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i n

d I H d
m s
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 (5) 
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follows an F(m, n-k) distribution. If m = 1, then H and d are scalars and the test is based on the 
prediction interval for one additional observation. In this case, the distribution under the null 
hypothesis is F(1, n-k) and equation (5) reduces to the ratio  
 

 
2

2
|

.
(1 ) i n

d
H s+

 (6) 

 
Both versions, in equations (5) and (6), are used in the results below. 
 
3. Data 
 
Price series used in this report are broadly defined as indices of real values paid, or received, 
divided by the amount traded, or produced, in the 16 years from 1991-2006. These price indices 
are taken as industry-wide averages. Real values were calculated using the U.S. producer price 
index for the item ‘unprocessed and packaged fish’ (i.e. series WPU0223 from U.S. Bureau of 
Labor Statistics http://www.bls.gov/ppi). The last year of data, 2006, is based on the most recent 
year of COAR data that was available to the author at the time analysis for this report was 
initiated, in spring 2008. The first year of data, 1991, was selected based on the author’s 
confidence in reliably linking COAR data with Intent to Operate (ITO) records, CFEC fish 
tickets, and other sources (T. Hiatt, pers. comm.). Since the U.S. trade statistics for king crab go 
back to 1983, an analysis that uses longer time series may be feasible in the future.  
 
Comparable data requires that selected process and product codes in COAR match categories 
that are relevant to king crab in the Harmonized Commodity Description and Coding System 
(HS) for import data. Only 3 categories in the HS-10 system, the finest resolution available in the 
U.S. Merchandise Trade Statistics, specifically identify king crab, and these 3 provide no further 
detail about species. These 3 are frozen king crab (not elsewhere specified or indicated), 
prepared king crab meat (frozen), and prepared king crab meat (in airtight containers). The latter 
pair appears to have been added recently to the HS-10 system, and almost all U.S. king crab 
imports fall into the frozen king crab category. Thus, data on U.S. imports are comparable to data 
with the process code ‘frozen’ in COAR. Regarding species composition, U.S. imports are 
believed to be composed mainly of red king crab from Russia, with smaller amounts from 
Norway, and it is unknown how much of U.S. imports are derived from Bering Sea, versus 
Barents Sea, stocks. The most direct comparison with U.S. imports is the red king crab fishery in 
Alaska. However comparisons over time with blue, and golden, king crab are interesting and 
COAR data on all 3 species are presented next. 
 
Wholesale Prices from COAR 
 
Files containing COAR production data were retrieved from the Pacific States Marine Fisheries 
Commission Alaska Fisheries Information Network (AKFIN) in spring 2008. Since COAR 
records are given with processor identification (PID) codes, it is important to realize that there is 
not a 1-1 relationship between processors and PID codes, and in some cases, an individual PID 
code may even be associated with different processors over time. Even though aggregated data 
are used in the time series analysis described in this report, data quality considerations motivate 
treating these data in a disaggregated format in the construction of these aggregates, to identify 
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unlinked (i.e. orphan) records, determine the number of distinct processing units in the sample, 
and calculate other essential statistics. Therefore, a bridge between PID codes and processors for 
each year was needed to stratify the production data among processing units. The Alaska 
Department of Fish and Game (ADFG) generously provided that bridge with lists of processors 
(based on federal EIN) that recorded landings for species codes 921 (red), 922 (blue), and 923 
(golden), king crab in the years 1991-2006.2 In particular, these lists associate each processor 
with a set of PID codes, for each year, under which king crab was bought or sold. Numbers of 
distinguishable separate processors in each year are listed in Table 1. 
 
Table 1: Number of Separate Processors (N) with King Crab Production in COAR 1991-2006. 
 

  RED(N) BLUE(N) GOLD(N)
2006 9   10 
2005 13 1 10 
2004 13   11 
2003 22 1 14 
2002 22 1 13 
2001 23 1 12 
2000 17 2 13 
1999 20 3 13 
1998 16 12 11 
1997 19 13 13 
1996 22 11 11 
1995 22 13 14 
1994 19 11 11 
1993 22 14 13 
1992 20 12 11 
1991 24 9 10 

 
Summaries of COAR production data in each category were computed based on the ADFG 
processor lists using programs written by the author in Perl, a high-level dynamic programming 
language with powerful text processing capabilities that make it ideal for working with large text 
files (Wall, Christiansen, and Orwant 2000). These COAR summaries include king crab 
produced under all process and product codes.3  

                                                 
2 The author thanks Mike Plotnick for running these queries, providing the lists in a nice useful format, and advice 
on interpreting COAR and ITO databases. Processors with production of Tanner crabs were also included in the 
lists, but a time series analysis of that data was not ready in time for this report, and it is planned for a future report. 
3 The process codes in COAR for a common commodity (cooked and frozen crab) are ambiguous, which resulted in 
an ADFG whitepaper on the subject (Shirley 2005). The recommendation there was to indicate ‘cooked’ if the crab 
was cooked before freezing. However prior to 2005, essentially all king crab production in COAR was processed 
under the code for ‘frozen’ despite the fact that a substantial amount (perhaps most) was cooked and then frozen. 
Since 2005 the fraction of king crab recorded in COAR as ‘cooked’ has increased, and was close to 50% in 2006. 
However it is unknown how much of that increase reflects actual changes in the processing of king crab post-
rationalization and how much is due to changes in recording behavior. In addition, several king crab records in 
COAR have process or product codes that do not make sense, including one with more than 10% of total production 
in a year. These 2 sources of uncertainty in the process and product codes favor an inclusive treatment. Another 
justification for aggregating these codes is to reconcile COAR production levels with U.S. exports of king crab, 
which is addressed below. 
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Figure 1: Red, Blue, and Golden, King Crab Production from COAR, 1991-2006.  
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Data fields in COAR files vary by year but only a subset of these, which are available for all 
years from 1991-2006, are relevant here: species code, process code, product code, net pounds 
(net_lbs), and wholesale values in current dollars (ws_val).4 In the production summaries, net 
pounds of production were converted to metric tons (mt), and wholesale values to thousands of 
real (2005) dollars. With these changes in units, dividing wholesale values by production 
quantities gives a COAR price index (COARPI) in real dollars per kilogram (2005$/kg). 
Data displayed in Figure 1 are used with real COAR wholesale values to form indices of 
wholesale prices for each species of king crab. These price indices are displayed in Figure 2. Red 
king crab is seen to be the most valuable per unit weight over weight, except in a few years after 
1999 which are not important (and not displayed due to confidentiality restrictions based on a 
rule of 4) because only negligible amounts of blue king crab production appeared in COAR for 
these years. A recent downward trend in prices is evident but it is not unprecedented, a decline of 
even greater magnitude occurred after 1994 for red king crab, the low value in 2006 was also 
reached in 1998, and in general, the price index for it is volatile. Consequently, there does not 
seem to be a clear trend in price indices for king crab since 1991.  
 
Figure 2: Real Wholesale Prices for King Crab Production from COAR, 1991-2006. 

0

5

10

15

20

25

30

35

40

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1s
t w

ho
le

sa
le

 p
ric

es
 (2

00
5$

/k
g)

 

RED BLUE GOLD

 
 
U.S. Imports and Exports from the Trade Policy Information System 
 
The Trade Policy Information System (TPIS) is a web-based retrieval tool for accessing U.S. and 
United Nations trade data that is made available to federal government employees by the 

                                                 
4 References for ADFG codes and COAR booklets can be found online at www.adfg.state.ak.us. 
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International Trade Administration in the U.S. Department of Commerce.5 The author used TPIS 
to query HS-10 level detail in the U.S. Merchandise Statistics, which are collected by the U.S. 
Census Bureau. There are 3 HS-10 codes that link specifically to king crab: ‘King crabs, frozen’ 
(#0306144010), ‘King crabmeat, prepared in airtight containers’ (#1605102010), and ‘King 
crabmeat, prepared frozen’ (#1605104002).  The latter pair (i.e. #1605…) are probably recent 
additions to the HS-10 system (which is updated periodically), and these categories are 
associated with negligible quantities over the time period analyzed in this report. In terms of 
COAR code descriptors, U.S. trade data identify a single process, frozen, which presumably 
consists primarily of sections or whole crab but may also contain unknown amounts of crabmeat 
or other products that involve further processing. As noted above, there is an ambiguity in 
process codes with respect to king crab in COAR production data, and also in trade data, because 
both cooking and freezing may occur. In addition, HS-10 import and export data do not identify 
the particular species.  
 
Unlike imports, the composition of U.S. exports has probably varied over time, and even though 
exports are not the subject of this report, it is worth briefly comparing export levels from TPIS 
with production levels from COAR. This comparison, between total king crab production (red, 
blue, and golden) and king crab exports (which implicitly includes these 3 species in unknown 
amounts), is presented in Figure 3 in terms of both physical units and monetary value. The first 
set of comparisons is between total production and export levels, using the ratio of COAR 
production divided by TPIS export volume (both in metric tons). The second set of comparisons 
is between real wholesale values from COAR, divided by TPIS real export values (both in 2005 
dollars). For the latter, export values are taken as ‘Free Alongside Ship’ (FAS), meaning net of 
transport margins. Figure 3 indicates that the year 1994 is a bounding case where total 
production in COAR for all 3 species just meets the export volume recorded in the U.S. trade 
statistics for that year.  
 
Both sets of statistics, exports and production, are based on the same calendar year, and thus, the 
latter should exceed the former if both sets are to be believed. Since the values in 1994 are 
suspiciously close, errors in one, or both, series are reasonable concerns. However a consistent 
bias in levels should not have a substantive effect on the model and tests described in Section 2. 
In addition, there is a noticeable difference in 1994 between the ratios of export volume divided 
by total production, compared to that of export value divided by wholesale value, but nonetheless 
this difference in 1994 is comparable to other years (e.g. 1999, 2003). In general, the difference 
between these ratios has varied over time, reflecting 2 types of changes: those in prices and in the 
species composition of exports. In most years, the ratio in quantities is greater than the one in 
values which implies that the average value (over all species) of king crab was greater in the U.S. 
compared to the average price that Alaska producers received on global markets. This result 
implies either that world prices were lower, or that higher value king crab (e.g. red) was 
consumed, than on average in the U.S. 
                                                 
5 In addition, NMFS Office of Science and Technology administers a trade database 
(http://www.st.nmfs.noaa.gov/st1/trade) with data from the Foreign Trade Service in the U.S. Census Bureau. The 
NMFS site is better suited for faster queries that do not require direct access to HS-10 level data. Similarly, the 
Foreign Agriculture Service in the U.S. Department of Agriculture has a website with trade data 
(http://www.fas.usda.gov), which provides a good source for HS-10 category descriptions and also a good source of 
HS-10 data. However TPIS is more efficient at generating formatted files that can be processed directly to generate 
time series of exports and imports at the HS-10 level. 
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 Figure 3: U.S. Exports of Frozen King Crab as a Fraction of COAR Production (QEX) and 
Wholesale Value (VEX) of King Crabs, 1991-2006. 
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Data on the total physical volume of king crab imports (from TPIS), and COAR production net 
of the total physical volume of TPIS exports are displayed in Figure 4. The latter quantity 
represents, perhaps imperfectly due to comparability issues with respect to COAR and TPIS or 
re-exported crab returning to the U.S., the amount of domestic production that is consumed in the 
U.S. The ‘flood’ of Russian king crab into the U.S. after 2004 that is mentioned in the 
introduction is apparent in Figure 4: U.S. imports of king crab increased by approximately 200% 
from levels in, and before, 2004. At this stage, questions arise as to whether the temporal pattern 
of imports in Figure 4 presents a problem for the time series analysis described in Section 2. 
Visually, the sharp increase in imports after 2004 certainly does not appear to be stationary and it 
is not surprising that both diagnostic tests for this situation that are referenced in Section 2 reject 
the hypothesis that the time series of king crab imports is stationary. Therefore this time series 
violates a fundamental assumption in the VAR framework described above. A suitable extension 
of that framework might accommodate the time series for imports, but those techniques are 
beyond the scope of this report. Quantities are directly excluded from the time series analysis 
described in this report, and only dynamic relationships between price indices based on COAR 
and TPIS imports are considered.  
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Figure 4: U.S. Import Volume (TPIS) and Production Net of Exports (NETCOAR), 1991-2006.  
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Figure 5: Price Indices for COAR wholesale, TPIS Exports, and TPIS Imports, 1991-2006. 
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Figure 5 displays time series of TPIS imports and COAR price indices. The price index for TPIS 
imports uses the ‘Customs’ value of imports in TPIS, which is the value of a commodity that is 
assigned upon entry into the U.S., and is formed by dividing this value for each year by the 
quantity imported in that year. A price index for TPIS exports, based on FAS-values, is also 
displayed in Figure 5 for comparison.   
 
All 3 series in Figure 5 decline after 2001, and nearly converge. In general, the range of these 3 
variables fluctuates over time from a high in 1999, driven by a high value in the wholesale price 
index from COAR and an unusually low period in the TPIS price index for imports of king crab. 
A potentially significant feature is the simultaneous decline of all 3 series in Figure 5 after 2002, 
but it is worth noting that this decline in prices began before the sharp increase after 2004 in the 
volume of U.S. king crab imports. 
 
4. Results 
 
A generalization of the first-order VAR in (2), including second- and third-order lag variables, 
was analyzed and results for all 3 lag lengths are reported in this section. For convenience, the 
first-, second-, and third-order VAR models are denoted by VAR(1), VAR(2), and VAR(3), 
respectively. For reference, a VAR(3) has 8 parameters to estimate, and 13 years of data from 
1991-2006 are available for estimation. A fourth-order VAR has 18 parameters, but only 12 
years of data can be used, and therefore estimation is indeterminate here for any VAR of order 
greater than 3.  
 
The analysis reported here follows the advice of Zivot and Wang (2003) in using model selection 
criteria to determine lag length in a VAR. This text lists the 3 most common information criteria: 
Akaike (AIC), Schwarz-Bayesian (BIC), and Hannan-Quinn (HQ). Results for these criteria are 
presented in Table 2. In particular, the goal is to select a lag length that minimizes an information 
criterion. Here the results are ambiguous because 2 criteria (AIC and HQ) favor a VAR(2) but 
the BIC favors a VAR(1).6  
 
 
Table 2: Information Criteria for VAR Models of Price Indices from COAR and TPIS Imports. 
 

  VAR(1) VAR(2) VAR(3) 
AIC 126.8 125.7 132.7 
BIC 130.2 131.4 140.7 
HQ 126.1 124.6 131.1 

 
Since the model selection criteria described above are not the only indicators, and are not 
definitive in this case, a complete set of regression results for each of the 3 models is presented 
in Table 3. 

                                                 
6 Hamilton (1994, p.297) describes a standard likelihood ratio test that is simple to perform, with an asymptotic chi-
squared distribution, for determining lag length in a VAR with normal error terms. This test of a VAR(1) against a 
VAR(2) has a p-value of 0.06, whereas the log-likelihood value of a VAR(3) is very close to a VAR(2), and the p-
value for the latter test is 0.90. Thus, results of the likelihood ratio test appear to be consistent with those in Table 2. 
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Table 3: Regression Results for VAR Models of Price Indices from COAR (xp) and TPIS 
Imports (xm).  
 

  VAR(1) VAR(2) VAR(3) 
  xp xm xp xm xp xm 
          
(Intercept) 11.791 6.958 14.588 8.610 16.163 8.897 

(std.err) 6.796 4.291 9.333 5.428 13.800 6.955 
(t.stat) 1.735 1.622 1.563 1.586 1.171 1.279 

              
          

xp.lag1 -0.363 0.090 -0.636 -0.049 -0.784 -0.128 
(std.err) 0.347 0.219 0.453 0.264 0.605 0.305 

(t.stat) -1.047 0.410 -1.403 -0.185 -1.295 -0.420 
          

xm.lag1 0.963 0.411 1.392 0.865 1.787 1.206 
(std.err) 0.503 0.318 0.721 0.419 1.052 0.530 

(t.stat) 1.914 1.293 1.930 2.063 1.699 2.274 
              
          

xp.lag2    -0.466 -0.136 -0.454 -0.011 
(std.err)    0.433 0.252 0.635 0.320 

(t.stat)    -1.076 -0.539 -0.715 -0.033 
          

xm.lag2    0.349 -0.187 -0.007 -0.663 
(std.err)    0.622 0.362 1.037 0.523 

(t.stat)    0.561 -0.517 -0.007 -1.269 
              
          

xp.lag3       -0.061 0.098 
(std.err)       0.544 0.274 

(t.stat)       -0.112 0.357 
          

xm.lag3       0.097 -0.082 
(std.err)       0.813 0.410 

(t.stat)       0.120 -0.199 
              
          

R^2 0.235 0.246 0.308 0.434 0.379 0.616 
Adj.R^2 0.107 0.120 0.000 0.183 -0.242 0.232 

              
 
 
Each column in Table 3 corresponds to a single equation in one of the models, and summary 
diagnostics for each are given by R-Squared, and an adjusted R-Squared statistic, as reported by 
the S+Finmetrics software. In addition to coefficient estimates, the software provides standard 
errors and t-statistics to evaluate the significance of individual parameters in each equation. A 
comparison of observed and fitted values for each VAR model is presented in Figure 6. 
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Figure 6: Observed and Fitted Values for VAR Models of Price Indices from COAR and TPIS 
Imports. 
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The next set of results is aimed at testing key assumptions in the VAR framework, based on the 
diagnostic tests described in Section 2. There, 2 tests are cited to determine whether data are 
compatible with a stationary model. One is probably the most popular unit-root test, Augmented 
Dickey-Fuller (ADF), which is based on a null hypothesis that data are nonstationary. The other, 
KPSS, is based on a stationary null. For the latter, the software reports a value of the test statistic, 
and only whether it is significant at a 1%, or 5%, level. Test statistics and p-values for both unit-
root tests (up to the level reported by the software for the KPSS test) are presented in Table 4. 
Note that the KPSS test does not depend on lag length (or at least it is not an option in the 
S+Finmetrics function) and its values for each equation are repeated under each VAR model to 
compare with ADF test results. In all but 1 case, neither hypothesis is rejected by results in Table 
4. In that 1 case, the ADF test rejects the null of nonstationary data. In other words, the stationary 
null was not rejected, and in 1 case, the nonstationary null was rejected (5%-level). 
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Table 4: Augmented Dickey-Fuller (ADF) and KPSS Unit Root Tests of Price Indices from 
COAR (xp), and TPIS Imports (xm). 
 

  VAR(1) VAR(2) VAR(3) 
  Xp xm xp xm xp xm 
            

ADF (unit root null) -3.169 -2.085 -2.045 -1.704 -1.576 -1.901 
p.value 0.043 0.252 0.267 0.408 0.466 0.322 

            
KPSS (stationary null) 0.137 0.107 0.137 0.107 0.137 0.107 

p.value >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 
              

 
 
Properties of the residuals from each fitted VAR model are quantified in Table 5 using the 
diagnostic tests for normality and autocorrelation that are described in Section 2. In addition, the 
fitted residuals are presented graphically in Figure 7 and Figure 8, for the COAR price index (PI) 
and TPIS Imports PI, respectively. Plots in each column correspond to a single model (i.e. lag 
length). The first row of plots shows the fitted residuals for each model as a time series. The 
second row displays histograms of these residuals. The autocorrelation function (with 95% 
confidence limits about zero) for each model is plotted in the third row. In the fourth row, normal 
quantile-quantile (QQ) plots for each model are expressed, which are scatterplots of standardized 
empirical quantiles of each set of residuals against the quantiles of a standard normal distribution 
(i.e. if the residuals are normally distributed, then the quantiles will lie on the 45 degree line).  
 
 
Table 5: Tests of Residuals from VAR Models of Price Indices from COAR (xp), and TPIS 
Imports (xm). 
 

  VAR(1) VAR(2) VAR(3) 
  xp xm xp xm xp xm 
            

Ljung-Box (Autocorrelation) 0.088 1.556 0.006 1.312 0.813 0.772 
p-value 0.767 0.212 0.997 0.519 0.666 0.680 

            
Ljung-Box (Autocorrelation^2) 0.309 0.025 0.548 1.655 0.027 3.208 

p-value 0.579 0.875 0.760 0.437 0.987 0.201 
            

Shapiro-Wilk (Normality) 0.968 0.951 0.980 0.927 0.970 0.902 
p-value 0.795 0.522 0.950 0.268 0.845 0.137 
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Figure 7: COAR PI Residuals, Histograms, Autocorrelation Functions, and QQ Plots.  
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Figure 8: TPIS Imports PI Residuals, Histograms, Autocorrelation Functions, and QQ Plots.  
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The final set of results in this section address the 2 hypotheses raised in the introduction. One of 
these is that prices for U.S. imports are statistically related to wholesale prices that Alaska 
processors receive for king crab. The other is that crab rationalization represented a structural 
break in the fishery that may have affected prices for king crab. In the former case, results of 
Granger causality tests, carried out using the Wald statistic in S+, are presented for each VAR 
model in Table 6. According to these results, the COAR price index is marginally helpful in 
forecasting import prices only in the first-order VAR. Otherwise, there is not significant 
evidence of a dynamic relationship between domestic and import price series for king crab. In 
the latter case, 3 versions of the Chow tests were performed and these results are presented in 
Table 7. The first of these test results, Chow1(2005), compares predicted 2005 prices from a 
VAR model estimated using data from the period 1991-2004 to observed 2005 prices. The 
second test, Chow1(2006), is similar to the first except that data from the period 1991-2005 are 
used for estimation, and 2006 prices are used as the basis for comparison. In the third and final 
test, Chow2, data from 1991-2004 are used for estimation and both prices, from 2005 and 2006, 
are used for comparison. In particular, the first and second Chow tests correspond to the scalar 
version from equation (6) in Section 2 while the third is based on the multivariate version from 
equation (5). 
 
 
Table 6: Wald Granger Causality Tests in VAR Models of Price Indices from COAR, and TPIS 
Imports. 
 

  VAR(1) VAR(2) VAR(3) 
    
TPIS Imports PI fails to Granger cause COAR PI 0.168 0.298 0.456 

p-value 0.682 0.861 0.928 
   

COAR PI fails to Granger cause TPIS Imports PI 3.663 3.991 3.630 
p-value 0.056 0.136 0.304 

        
 
 
Table 7: Chow Tests in VAR Models of Price Indices from COAR (xp), and TPIS Imports (xm). 
 

  VAR(1) VAR(2) VAR(3) 
  xp xm xp xm xp xm 
            
Chow1(2005) 0.231 0.492 0.331 0.242 0.220 0.012 

p.value 0.641 0.499 0.583 0.638 0.664 0.918 
            

Chow1(2006) 1.849 1.958 1.638 1.854 1.045 1.247 
p.value 0.201 0.189 0.236 0.210 0.354 0.315 

            
Chow2 1.092 1.250 0.916 0.960 0.551 0.506 
p.value 0.372 0.328 0.443 0.428 0.615 0.637 
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5. Conclusions 
 
This report describes the application of vector autoregression (VAR) models from financial 
econometrics to time series based on prices paid for U.S. imports of king crab, primarily from 
Russia, and on wholesale prices for these received by Alaskan processors over the period 1991-
2006. Overall, first- and second-order VAR models were found to fit the data about equally well 
and both models, plus a third-order model, passed diagnostic tests and satisfied other criteria. 
These models were then used to test 2 hypotheses, stated in the introduction, about the effects of 
imports and rationalization on wholesale prices. The first of these tests, for Granger causality, 
rejected the presence of certain dynamic relationships between wholesale and import price series, 
implying that neither series is helpful in forecasting the other. However the absence of these 
particular relationships does not necessarily imply that the 2 series are uncorrelated, it only 
means that correlation, if it exists, takes a simple form. For example, equations in the model for 
each price series are subject to random disturbances (i.e. regression equations) and the 
covariance of these across equations may be nonzero. In other words, the simultaneous decline of 
wholesale and import prices for king crab in the U.S. since 2002 can be attributed to outside 
factors that influenced both price series.  
 
An important caveat to results from the first test is that import quantities were excluded from the 
time series analysis reported here for technical reasons, namely that the large influx of king crab 
imports to the U.S. in 2005 and 2006 violates an important assumption (i.e. stationary data) in 
the standard VAR model. An alternative explanation, raised in the introduction, is that if U.S. 
and Russian king crab products compete in domestic markets to a significant degree, then 
economic theory implies that, in simple terms, an influx of imports could cause both U.S. import 
and wholesale prices to decline. In fact substantial quantities of Alaska king crab, from 30% to 
more than 50% of total production since 2002, are consumed in the U.S. Under this alternative 
explanation, the magnitude of these declines would depend on price elasticities, and the cross 
price elasticity in particular, of demand for each product. Estimating these elasticities using a 
model of market demand is a reasonable research objective but requires a different model, data, 
and overall approach, from those utilized in this report. Nonetheless, if the cross price elasticity 
is small, for example because of quality differences that limit substitution among crab products 
from Alaska and Russia, then results from this alternative model would confirm those reported 
above.  
 
The second hypothesis stated in the introduction was that rationalization of the Bering Sea and 
Aleutian Islands (BSAI) crab fisheries in fall 2005 led to a structural break in wholesale prices of 
Alaska king crab. A complication for testing the presence of a structural break in wholesale 
prices is that data on commercial processing of Alaska king crab are available only on an annual, 
calendar-year, basis but the rationalization program was implemented in mid-year. This 
complication was addressed by a sensitivity analysis using 3 versions of a Chow test: The first 
test was for the presence of a break in 2005 using only the observed value in that year, the 
second was for a break in 2006 using the observed value in that year, and the third was for a 
break in 2005 using observations in 2005-2006. None of these tests produced a significant result, 
which implies that rationalization has not had a detectable statistical effect on the wholesale price 
index for Alaska king crab. In a way, this result may not be surprising. In terms of economic 
theory, it seems that wholesale prices would increase only if there was a substantial change after 



 20

rationalization in king crab products, or a shift in market power. In terms of production, large 
changes are not apparent in the data, though the composition of red king crab, compared to 
golden, appears slightly higher in 2005-2006 than in previous years but this effect on the overall 
price index for king crab appears to be relatively small. Regarding market power, the number of 
red king crab processors has declined since rationalization, from 13 in 2004-2005 to 9 in 2006, 
the minimum number since the start of the data series in 1991, but the number of golden king 
crab processors has remained between 10 and 14 through the entire period. In any case, it is 
worth noting here that a separate VAR, which was not included in the results above, did not 
support including Alaska production quantities as a significant factor in the equation for 
wholesale prices, which implies that Alaska king crab processors are price-takers on domestic 
and world markets. 
 
Two final remarks, of a general nature, conclude this report. First, the length of the time series 
used for analysis in this report, especially the 2-years of data post-rationalization, are a limit on 
the statistical power of test results. As more data become available, the analysis in this report can 
be updated, and the results could change. Another way to boost statistical power of a short time 
series would be to use disaggregated data (i.e. time series for individual processors) in a panel 
vector autoregression (PVAR). In fact, an important caveat for the analysis in this report is the 
use of aggregated time series data. While the use of such data is a common practice in time series 
econometrics, it is well known that if certain restrictions on parameters in a model with 
individual time series do not hold, then the use of aggregated data in a model can result in biased 
parameter estimates and other problems (Hsiao 1986). There is, however, a major complication 
of testing these restrictions in fisheries data, namely the frequent and often autocorrelated 
occurrences of zero values over time for some individuals. Consequently, tests of these 
restrictions, known as an analysis of covariance, were not performed on the disaggregated data 
used in this report. In future work, a simulated maximum likelihood approach could be used to 
treat censored data  (e.g. Lee 1999) in a PVAR but a suitable method of this type is not yet 
available in the econometrics literature, though it is the subject of ongoing work by the author 
(Dalton 2007).   
 
The final point goes to evaluating the economic performance of BSAI crab fisheries following 
rationalization. In that regard, National Standard 5 of the Sustainable Fisheries Act considers 
economic efficiency in the utilization of fishery resources. In its simplest form, economic theory 
separates efficiency into terms of marginal revenues and marginal costs. A general conclusion of 
the analysis in this report is that, so far, marginal revenues (i.e. wholesale prices) have not been 
affected to a significant degree by rationalization. However that general conclusion is an 
incomplete and therefore uninformative statement about possible efficiency gains, or losses, in 
the BSAI crab fishery following rationalization. A complete economic accounting of efficiency 
considerations with respect to National Standard 5 will require a different type of analysis from 
the one described in this report, and in particular, that analysis will need to incorporate data on 
costs to prescribe any positive conclusions about possible changes in efficiency.  
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Appendix: Results of Forecasting with VAR Models 
 
Figure A1: Observed Values (2005$/kg) and 10-yr Forecasts 2007-2027 (index units 17-27) 
with 95% Confidence Bounds from the VAR(1) Model Conditional on Data from 1991-2006 
(index units 1-16; import prices, xm, are first and COAR prices, xp, are second). 
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Figure A2: Observed Values (2005$/kg) and 10-yr Forecasts 2007-2027 (index units 17-27) 
with 95% Confidence Bounds from the VAR(2) Model Conditional on Data from 1991-2006 
(index units 1-16; import prices, xm, are first and COAR prices, xp, are second). 
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Figure A3: Observed Values (2005$/kg) and 10-yr Forecasts 2007-2027 (index units 17-27) 
with 95% Confidence Bounds from the VAR(3) Model Conditional on Data from 1991-2006 
(index units 1-16; import prices, xm, are first and COAR prices, xp, are second). 
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Figure A4: Orthogonal Impulse Response Functions and Forecast Error Variance 
Decompositions with 95% Confidence Bounds for (top to bottom) VAR(1), VAR(2), and 
VAR(3), Models. 
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Figure A5: Observed Values (2005$/kg) and Predictions with 95% Confidence Bounds from the 
VAR Models (import prices, xm, are first; COAR prices, xp, are second in each pair of plots) 
Used in Chow Tests with (top to bottom) 1 Additional Observation in 2005, 1 Additional 
Observation in 2006, and 2 Additional Observations in 2005 and 2006, and (reproduced from 
above) 10-yr Forecasts 2007-2027 (index units 17-27) Conditional on Data from 1991-2006 
(index units 1-16).  
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